Part Number Hot Search : 
DS2050W 2SK12 2N301 DS50R4G 10EZ27 00144 10EZ27 R2020
Product Description
Full Text Search
 

To Download 10-F007NRA050SG-P966F09 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-F007NRA050SG-P966F09 datasheet flow npc 0 650 v / 50 a neutral point clamped inverter reactive power capability low inductance layout improved lvrt capability solar inverter ups 10-F007NRA050SG-P966F09 t j = 25 c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 650 v maximum junction temperature t jmax 175 c buck switch t j 150 c v ce <= v ces t sc t j 150 c 5 s v cc v ge = 15 v 400 v t s = 80 c 51 t s = 80 c 119 20 650150 v ces i crm i c t p limited by t jmax t j = t jmax 175 repetitive peak collector current dc collector current collector-emitter break down voltage buck sw. protection diode forward current power dissipation types dc current p tot maximum ratings i fav features flow 0 17mm housing target applications schematic w 33 t j = t jmax t s = 80 c condition a t s = 80 c 18 power dissipation v ge t jmax p tot short circuit ratings gate-emitter peak voltagemaximum junction temperature t j = t jmax c v w av aa turn off safe operating area 100 copyright vincotech 1 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet t j = 25 c, unless otherwise specified parameter symbol value unit maximum ratings condition buck diodeboost switch t j 150 c v ce <= v ces t sc t j 150 c 10 s v cc v ge = 15 v 800 v boost sw. protection diodeboost diode thermal properties insulation properties v is t = 2 s dc test voltage 4000 v min 12,7 mm min 12,7 mm cti t s = 80 c 24 t s = 80 c 61 t s = 80 c 16 t s = 80 c 36 57 t s = 80 c 41 t s = 80 c 101 comparative tracking index maximum junction temperature t jmax 175 t c =25c v rrm dc forward currentpower dissipation t j = t jmax maximum junction temperature va v c w aa 70 collector-emitter break down voltage t p limited by t jmax repetitive peak collector current v ces i crm t j = t jmax i c short circuit ratings dc collector current power dissipation turn off safe operating areagate-emitter peak voltage c t jmax 175 v 600 20 w a w v c va a 10mssin 180 v rrm v ge i f t jmax t j = t jmax p tot t j = t jmax dc forward current i f t j = t jmax p tot peak repetitive reverse voltage maximum junction temperature repetitive peak forward current v rrm t j = t jmax t p limited by t jmax a t j = t jmax 70 w a t s = 80 c 27 t s = 80 c peak repetitive reverse voltage power dissipation p tot dc forward current i f peak repetitive reverse voltage i frm 1200 150 1200 105 1200 -40+( t jmax - 25) c storage temperature t stg -40+125 c c maximum junction temperature t jmax 175 clearance insulation voltagecreepage distance t op operation temperature under switching condition 100 power dissipation p tot t j = t jmax t j =150c surge forward current i fsm copyright vincotech 2 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet parameter symbol unit v ge [v] v gs [v] v r [v] v ce [v] v ds [v] i c [a] i f [a] i d [a] t j [c] min typ max 25 1,3 1,67 2 125 1,54 thermal resistance junction to sink r th(j-s) 2,87 thermal resistance junction to case r th(j-c) 1,89 25 1,4 1,90 2,5 125 2,17 25 67 125 67 25 7 125 9 25 106 125 129 25 7 125 16 25 0,15 125 0,18 25 0,24 125 0,46 thermal resistance junction to sink r th(j-s) 0,80 thermal resistance junction to case r th(j-c) 0,53 25 1 1,38 1,7 125 1,49 25 22 125 20 25 9 125 9 25 0,08 125 0,17 25 8029 125 7036 25 0,01 125 0,03 thermal resistance junction to sink r th(j-s) 1,68 thermal resistance junction to case r th(j-c) 1,10 25 150320 25 25 0,14 25 4,2 5,1 5,6 50 0,0008 650350 350 480 25600 35 16 3550 0 phase-change material = 3,4 w/mk c ies q rr t rr q g c oss f = 1 mhz v ce = v ge r gon = 4 t r t d(on) t d(off) r gint i ges i r e rec i rrm c rss v f ( d i rf /d t ) max buck diode reverse transfer capacitancereverse leakage current peak reverse recovery current reverse recovery time reverse recovered energy peak rate of fall of recovery current turn-on delay time output capacitance fall time turn-off delay time turn-off energy loss rise timeturn-on energy loss input capacitance diode forward voltage gate charge e off collector-emitter saturation voltagegate-emitter leakage current v ge(th) v cesat i ces t f e on v f characteristic values forward voltage buck sw. protection diode value conditions 10 k/w 650 25 v a i r reverse current k/w 25 5 k/w a v integrated gate resistor buck switch gate emitter threshold voltagereverse recovered charge collector-emitter cut-off current incl. diode 15 r goff = 4 r gon = 4 15 phase-change material = 3,4 w/mk phase-change material = 3,4 w/mk tbd. 15 25 0 20 015 90 3100 c mws a/s a va mws ns na v nc ns none pf 315 copyright vincotech 3 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet parameter symbol unit v ge [v] v gs [v] v r [v] v ce [v] v ds [v] i c [a] i f [a] i d [a] t j [c] min typ max characteristic values value conditions 25 1,6 2,06 2,3 125 2,14 25 44 125 45 25 5 125 8 25 148 125 192 25 71 125 110 25 0,37 125 0,63 25 1,25 125 1,93 thermal resistance junction to sink r th(j-s) 0,94 thermal resistance junction to case r th(j-c) 0,62 25 1,60 2,01 2,60 125 1,66 thermal resistance junction to sink r th(j-s) 1,92 thermal resistance junction to case r th(j-c) 1,27 25 2 2,30 2,9 125 2,40 25 65 125 67 25 43 125 122 25 2,24 125 4,25 25 5361 125 3861 25 0,59 125 1,18 thermal resistance junction to sink r th(j-s) 1,56 thermal resistance junction to case r th(j-c) 1,03 25 5 5,8 6,5 v mws k/w 25 25 60 ns a ac k/w 35 v 25 0,005 120 25 1950 turn-on energy loss boost switch gate-emitter leakage currentturn-off delay time collector-emitter saturation voltagecollector-emitter cut-off incl diode turn-on delay time rise time fall time gate emitter threshold voltageintegrated gate resistor e off gate charge input capacitanceoutput capacitance c rss c oss c ies reverse transfer capacitance turn-off energy loss boost diode diode forward voltage v f reverse current i r t d(off) t r t d(on) r gint i ges v ge(th) 0,0012 +4,5 7 25 k/w mws a/s ns pf 21511 250 mw/k % mw 100 210 3,5 -4,5 tbd. 115 2525 nc r 100 = 1486 155 35 power dissipation constant power dissipation p 25 25 r/r rated resistance r deviation of r 100 thermistor phase-change material = 3,4 w/mk phase-change material = 3,4 w/mk 15 r gon = 4 20 0 480 15 0 015 none r gon = 4 15 i rrm reverse recovery energy t rr q rr e rec reverse recovery timepeak rate of fall of recovery current peak reverse recovery currentreverse recovered charge ( d i rf /d t ) max diode forward voltage v ce = v ge r goff = 4 thermal grease thickness50um = 1 w/mk t f i ces v cesat reverse leakage current v f i r f = 1 mhz e on boost sw. protection diode q g 1200 25 350 35 1200 35025 35 b-value b (25/50) b-value b (25/100) tol. 1% 25 25 e vincotech ntc reference k a ma na vv k 38843964 1200 copyright vincotech 4 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 1. igbt figure 2. igbt typical output characteristics i c = f( v ce ) i c = f( v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3. igbt figure 4. fwd typical transfer characteristics typical diode forward current as i c = f( v ge ) a function of forward voltage i f = f( v f ) at at t p = 250 s t p = 250 s v ce = 10 v buck typical output characteristics 0 25 50 75 100 125 150 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 30 35 0 2 4 6 8 10 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 15 30 45 60 75 0 0,5 1 1,5 2 2,5 3 3,5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 25 50 75 100 125 150 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 5. igbt figure 6. igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f( i c ) e = f( r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 35 a r goff = 4 figure 7. fwd figure 8. fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f( i c ) e rec = f( r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 35 a buck e on high t e off high t e on low t e off low t 0 0,2 0,4 0,6 0,8 0 15 30 45 60 75 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,2 0,4 0,6 0,8 0 4 8 12 16 20 r g ( ) e (mws) e rec low t 0,00 0,01 0,02 0,03 0,04 0 15 30 45 60 75 i c (a) e (mws) e rec high t e rec high t e rec low t 0,00 0,01 0,02 0,03 0,04 0 4 8 12 16 20 r g ( ) e (mws) copyright vincotech 6 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 9. igbt figure 10. igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f( i c ) t = f( r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 35 a r goff = 4 figure 11. fwd figure 12. fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f( i c ) t rr = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 35 a r gon = 4 v ge = 15 v buck t doff t f t don t r 0,00 0,01 0,10 1,00 0 15 30 45 60 75 i c (a) t ( m m m m s) t rr high t t rr low t 0,000 0,002 0,004 0,006 0,008 0,010 0,012 0 4 8 12 16 20 r gon ( ) t rr ( m m m m s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 4 8 12 16 20 r g ( ) t ( m m m m s) t rr high t t rr low t 0 0,003 0,006 0,009 0,012 0,015 0 15 30 45 60 75 i c (a) t rr ( m m m m s) copyright vincotech 7 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 13. fwd figure 14. fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f( i c ) q rr = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 35 a r gon = 4 v ge = 15 v figure 15. fwd figure 16. fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f( i c ) i rrm = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 35 a r gon = 4 v ge = 15 v buck i rrm high t i rrm low t 0 5 10 15 20 25 30 0 4 8 12 16 20 r gon ( ) i rrm (a) q rr high t q rr low t 0,00 0,05 0,10 0,15 0,20 0 4 8 12 16 20 r gon ( w ) q rr ( c) i rrm high t i rrm low t 0 5 10 15 20 25 0 15 30 45 60 75 i c (a) i rrm (a) q rr high t q rr low t 0,00 0,05 0,10 0,15 0,20 0,25 0 15 30 45 60 75 i c (a) q rr ( c) copyright vincotech 8 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 17. fwd figure 18. fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor d i 0 /d t ,d i rec /d t = f( i c ) d i 0 /d t ,d i rec /d t = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 35 a r gon = 4 v ge = 15 v figure 19. igbt figure 20. fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z th(j-s) = f( t p ) z th(j-s) = f( t p ) at at d = t p / t d = t p / t r th(j-s) = 0,80 k/w r th(j-s) = 1,68 k/w igbt thermal model values fwd thermal model values r (k/w) tau (s) r (k/w) tau (s) 6,19e-02 2,26e+00 5,88e-02 4,81e+00 1,10e-01 4,08e-01 1,68e-01 8,53e-01 4,12e-01 9,23e-02 6,16e-01 1,45e-01 1,04e-01 2,31e-02 3,72e-01 3,88e-02 5,73e-02 5,67e-03 2,69e-01 7,13e-03 4,98e-02 8,49e-04 1,97e-01 1,68e-03 buck t p (s) z th(j-s) (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 t p (s) z th(j-s) (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 di 0 /dt high t di rec /dt high t di 0 /dt low t di rec /dt low t 0 2000 4000 6000 8000 10000 12000 0 4 8 12 16 20 r gon ( ) di rec / dt (a/ m m m m s) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 2000 4000 6000 8000 0 15 30 45 60 75 i c (a) di rec / dt (a/ m m m m s) copyright vincotech 9 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 21. igbt figure 22. igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f( t s ) i c = f( t s ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23.. fwd figure 24. fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f( t s ) i f = f( t s ) at at t j = 175 c t j = 175 c buck 0 50 100 150 200 250 0 50 100 150 200 t s ( o c) p tot (w) 0 20 40 60 80 0 50 100 150 200 t s ( o c) i c (a) 0 30 60 90 120 0 50 100 150 200 t s ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t s ( o c) i f (a) copyright vincotech 10 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 25. igbt figure 26. igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f( v ce ) v ge = f( q g ) at at t j t jmax i c = 50 a buck v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 1 1 10 0 10 3 0 2 4 6 8 10 12 14 16 0 50 100 150 200 250 300 350 q g (nc) v ge (v) 130 v 520 v copyright vincotech 11 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 1. igbt figure 2. igbt typical output characteristics typical output characteristics i c = f( v ce ) i c = f( v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3. igbt figure 4. fwd typical transfer characteristics typical diode forward current as i c = f( v ge ) a function of forward voltage i f = f( v f ) at at t p = 250 s t p = 250 s v ce = 10 v boost 0 20 40 60 80 100 120 140 160 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 30 35 0 3 6 9 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 0 1 2 3 4 5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 120 140 160 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 12 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 5. igbt figure 6. igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f( i c ) e = f( r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 35 a r goff = 4 figure 7. fwd figure 8. fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f( i c ) e rec = f( r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 35 a boost e rec high t e rec low t 0,0 0,5 1,0 1,5 2,0 0 15 30 45 60 75 i c (a) e (mws) e rec high t e rec low t 0 0,3 0,6 0,9 1,2 1,5 0 4 8 12 16 20 r g ( w ww w ) e (mws) e on high t e on low t e off low t 0 0,5 1 1,5 2 2,5 3 0 15 30 45 60 75 i c (a) e (mws) e off high t e off high t e on high t e on low t e off low t 0,0 0,5 1,0 1,5 2,0 2,5 0 4 8 12 16 20 r g ( w ww w ) e (mws) copyright vincotech 13 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 9. igbt figure 10. igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f( i c ) t = f( r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 35 a r goff = 4 figure 11. fwd figure 12. fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f( i c ) t rr = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 35 a r gon = 4 v ge = 15 v boost t doff t f t don t r 0,001 0,01 0,1 1 0 15 30 45 60 75 i c (a) t ( m m m m s) t doff t f t don t r 0,001 0,01 0,1 1 0 4 8 12 16 20 r g ( w ww w ) t ( m m m m s) t rr high t t rr low t 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0 4 8 12 16 20 r gon ( ) t rr ( m m m m s) t rr high t t rr low t 0,00 0,03 0,06 0,09 0,12 0,15 0 15 30 45 60 75 i c (a) t rr ( m m m m s) copyright vincotech 14 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 13. fwd figure 14. fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f( i c ) q rr = f( r gon ) atat at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 35 a r gon = 4 v ge = 15 v figure 15. fwd figure 16. fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f( i c ) i rrm = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 35 a r gon = 4 v ge = 15 v boost i rrm high t i rrm low t 0 15 30 45 60 75 0 4 8 12 16 20 r gon ( ) i rrm (a) q rr high t q rr low t 0 1 2 3 4 5 0 4 8 12 16 20 r gon ( w ) q rr ( c) i rrm high t i rrm low t 0 20 40 60 80 100 0 15 30 45 60 75 i c (a) i rrm (a) q rr high t q rr low t 0 1 2 3 4 5 6 0 15 30 45 60 75 i c (a) q rr ( c) copyright vincotech 15 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 17. fwd figure 18. fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor d i 0 /d t ,d i rec /d t = f( i c ) d i 0 /d t ,d i rec /d t = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 35 a r gon = 4 v ge = 15 v figure 19. igbt figure 20. fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z th(j-s) = f( t p ) z th(j-s) = f( t p ) at at d = t p / t d = t p / t r th(j-s) = 0,94 k/w r th(j-s) = 1,56 k/w igbt thermal model values fwd thermal model values r (k/w) tau (s) r (k/w) tau (s) 1,15e-01 9,47e-01 4,65e-02 4,86e+00 4,15e-01 1,24e-01 1,06e-01 8,11e-01 2,99e-01 4,81e-02 4,71e-01 1,09e-01 7,22e-02 5,86e-03 4,83e-01 3,07e-02 3,82e-02 5,62e-04 2,34e-01 7,03e-03 1,81e-01 1,25e-03 boost t p (s) z th(j-s) (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 t p (s) z th(j-s) (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 di 0 /dt high t di rec /dt high t di 0 /dt low t di rec /dt low t 0 1000 2000 3000 4000 5000 6000 7000 8000 0 4 8 12 16 20 r gon ( ) di rec / dt (a/ m m m m s) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 1000 2000 3000 4000 5000 6000 7000 0 15 30 45 60 75 i c (a) di rec / dt (a/ m m m m s) copyright vincotech 16 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 21. igbt figure 22. igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f( t s ) i c = f( t s ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 23. fwd figure 24. fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f( t s ) i f = f( t s ) at at t j = 175 oc t j = 175 oc boost 0 40 80 120 160 200 0 50 100 150 200 t s ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 t s ( o c) i c (a) 0 30 60 90 120 0 50 100 150 200 t s ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t s ( o c) i f (a) copyright vincotech 17 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 25. boost sw. protection diode figure 26. boost sw. protection diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f( v f ) z th(j-s) = f( t p ) at at t p = 250 s d = t p / t r th(j-s) = 1,92 k/w figure 27. boost sw. protection diode figure 28. boost sw. protection diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f( t s ) i f = f( t s ) at at t j = 150 oc t j = 150 oc boost sw. protection diode 0 5 10 15 20 25 30 35 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z th(j-s) (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 0 20 40 60 80 0 50 100 150 200 t s ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t s ( o c) i f (a) copyright vincotech 18 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 1. buck sw. protection diode figure 2. buck sw. protection diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f( v f ) z th(j-s) = f( t p ) at at t p = 250 s d = t p / t r th(j-s) = 2,87 k/w figure 3. buck sw. protection diode figure 4. buck sw. protection diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f( t s ) i f = f( t s ) at at t j = 175 oc t j = 175 oc buck sw. protection diode 0 10 20 30 40 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z th(j-s) (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 0 15 30 45 60 75 0 50 100 150 200 t s ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t s ( o c) i f (a) copyright vincotech 19 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 1. thermistor typical ntc characteristicas a function of temperature r t = f( t ) thermistor ntc-typical temperature characteristic 0 4000 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/ copyright vincotech 20 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet t j 125 c r gon 4 r goff 4 figure 1. boost igbt figure 2. boost igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon ( t e off = integrating time for e off ) ( t e on = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 35 a i c (100%) = 35 a t doff = 0,19 s t don = 0,05 s t e off = 0,76 s t e on = 0,15 s figure 3. boost igbt figure 4. boost igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 35 a i c (100%) = 35 a t f = 0,11 s t r = 0,01 s switching definitions boost general conditions == = i c 1% v ce 90% v ge 90% -25 0 25 50 75 100 125 -0,2 0 0,2 0,4 0,6 0,8 time (s) % t doff t eoff v ce i c v ge i c 10% v ge 10% t don v ce 3% -50 0 50 100 150 200 250 300 2,95 3 3,05 3,1 3,15 3,2 time(s) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 100 125 0 0,1 0,2 0,3 0,4 time (s) % v ce i c t f i c 10% i c 90% -50 0 50 100 150 200 250 300 350 3,02 3,04 3,06 3,08 3,1 3,12 time(s) % t r v ce i c copyright vincotech 21 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 5. boost igbt figure 6. boost igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 12,36 kw p on (100%) = 12,36 kw e off (100%) = 1,93 mj e on (100%) = 0,63 mj t e off = 0,76 s t e on = 0,15 s figure 7. boost fwd turn-off switching waveforms & definition of t rr v d (100%) = 350 v i d (100%) = 35 a i rrm (100%) = -67 a t rr = 0,12 s switching definitions boost i c 1% v ge 90% -20 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 time (s) % p off e off t eoff v ce 3% v ge 10% -50 0 50 100 150 200 2,97 3 3,03 3,06 3,09 3,12 3,15 3,18 time(s) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -200 -150 -100 -50 0 50 100 150 3 3,05 3,1 3,15 3,2 3,25 time(s) % i d v d fitted copyright vincotech 22 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 8. boost igbt figure 9. boost igbt turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec ( t q rr = integrating time for q rr ) ( t erec = integrating time for e rec ) i d (100%) = 35 a p rec (100%) = 12,36 kw q rr (100%) = 4,25 c e rec (100%) = 1,18 mj t q rr = 1,00 s t e rec = 1,00 s figure 10. figure 11. buck stage switching measurement circuit boost stage switching measurement circuit measurement circuits switching definitions boost t qrr -200 -150 -100 -50 0 50 100 150 2,9 3,2 3,5 3,8 4,1 time(s) % i d q rr -25 0 25 50 75 100 125 3 3,4 3,8 4,2 time(s) % p rec e rec t erec d3 200uh l d4 vdc 700v 400v 100uf c1 400v c2 100uf 1mh l2 100k r1 r2 100k a ic vdc2 15v v vce v vcc q q 0.000003 q q 0.000003 v vge q q 0.00001 t1 t2 d1 d2 t3 t4 d5 d6 d3 l 200uh d4 350v vdc a ic 15v v vce q q 0.000003 q q 0.000003 vge q q 0.00001 d1 d2 t1 t2 t5 t6 d6 d5 copyright vincotech 23 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet t j 125 c r gon 4 r goff 4 figure 1. buck igbt figure 2. buck igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon ( t e off = integrating time for e off ) ( t e on = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 35 a i c (100%) = 35 a t doff = 0,13 s t don = 0,07 s t e off = 0,21 s t e on = 0,12 s figure 3. buck igbt figure 4. buck igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 35 a i c (100%) = 35 a t f = 0,02 s t r = 0,01 s switching definitions buck general conditions == = i c 1% v ce 90% v ge 90% -25 0 25 50 75 100 125 -0,1 0 0,1 0,2 0,3 time (s) % t doff t eoff v ce i c v ge i c 10% v ge 10% t don v ce 3% -50 0 50 100 150 200 2,95 3 3,05 3,1 3,15 3,2 time(s) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 100 125 0,02 0,06 0,1 0,14 0,18 time (s) % v ce i c t f i c 10% i c 90% -25 0 25 50 75 100 125 150 175 3,06 3,07 3,08 3,09 3,1 time(s) % t r v ce i c copyright vincotech 24 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 5. buck igbt figure 6. buck igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 12,32 kw p on (100%) = 12,32 kw e off (100%) = 0,46 mj e on (100%) = 0,18 mj t e off = 0,21 s t e on = 0,12 s figure 7. buck fwd turn-off switching waveforms & definition of t rr v d (100%) = 350 v i d (100%) = 35 a i rrm (100%) = -20 a t rr = 0,01 s switching definitions buck i c 1% v ge 90% -20 0 20 40 60 80 100 120 -0,05 0 0,05 0,1 0,15 0,2 0,25 time (s) % p off e off t eoff v ce 3% v ge 10% -25 0 25 50 75 100 125 2,98 3,01 3,04 3,07 3,1 3,13 3,16 time(s) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -100 -50 0 50 100 150 3,06 3,08 3,1 3,12 time(s) % i d v d fitted copyright vincotech 25 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet figure 8. buck igbt figure 9. buck igbt turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec ( t q rr = integrating time for q rr ) ( t erec = integrating time for e rec ) i d (100%) = 35 a p rec (100%) = 12,32 kw q rr (100%) = 0,17 c e rec (100%) = 0,03 mj t q rr = 0,02 s t e rec = 0,02 s figure 10. figure 11. buck stage switching measurement circuit boost stage switching measurement circuit measurement circuits switching definitions buck t qrr -100 -50 0 50 100 150 3,065 3,075 3,085 3,095 3,105 time(s) % i d q rr -50 0 50 100 150 200 250 300 350 3,08 3,085 3,09 3,095 3,1 3,105 time(s) % p rec e rec t erec d3 200uh l d4 vdc 700v 400v 100uf c1 400v c2 100uf 1mh l2 100k r1 r2 100k a ic vdc2 15v v vce v vcc q q 0.000003 q q 0.000003 v vge q q 0.00001 t1 t2 d1 d2 t3 t4 d5 d6 d3 l 200uh d4 350v vdc a ic 15v vdc2 v vce q q 0.000003 q q 0.000003 v vge q q 0.00001 d1 d2 t1 t2 t5 t6 d5 d6 copyright vincotech 26 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet date code ul & vin lot serial wwyy ul vin lllll ssss type&ver lot number serial date code tttttttvv lllll ssss wwyy x y function 33,6 0 g6 30,7 0 s6 27,8 0 nc 22 0 dc- 19,2 0 dc- 11,4 0 gnd 0 0 s2 0 2,9 g2 0 9,9 line 0 12,7 line 0 15,5 line 0 19,7 g1 0 22,6 s1 10,1 22,6 gnd 17,9 22,6 dc+ 20,8 22,6 dc+ 27,8 22,6 nc 30,7 22,6 s5 33,6 22,6 g5 33,6 14,8 ntc1 33,6 8,2 ntc2 name nn-nnnnnnnnnnnnnn-ttttttvv 1920 1112 13 14 78 21 1516 17 18 9 10 34 5 6 pin table pin 12 10-F007NRA050SG-P966F09 ordering code & marking outline text datamatrix ordering code version without thermal paste with solder pins 17mm housing copyright vincotech 27 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet pinout identification id component voltage current d1, d2 d9, d10 function comment t5, t6 d5, d6 650 v600 v buck switch buck diode t igbt fwdfwd igbt fwdfwd thermistor d13, d14 t1, t2 650 v 1200 v1200 v 1200 v 50 a16 a 10 a 35 a boost igbt boost diode boost sw. protection diode 25 a 7 a thermistor buck sw. protection diode copyright vincotech 28 20 jun. 2016 / revision 2
10-F007NRA050SG-P966F09 datasheet 135 disclaimerlife support policy as used herein: all document no.: date: modification: pages package data package data for flow 0 packages see vincotech.com website. ul recognition and file number this device is certified according to ul 1557 standard, ul file number e192116. for more information see vincotech.com website. sample 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. the information, specifications, procedures, methods and recommendations herein (together information) are presented by vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. no representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. it is readers sole responsibility to test and determine the suitability of the information and the product for readers intended use.vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 10-F007NRA050SG-P966F09-d2-14 20 jun. 2016 new brand, pcm rth values handling instruction handling instructions for flow 0 packages see vincotech.com website. packaging instruction standard packaging quantity (spq) >spq standard


▲Up To Search▲   

 
Price & Availability of 10-F007NRA050SG-P966F09

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X